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Abstract. We study the relationship between recent conjectures on slopes of overconvergent p-
adic modular forms “near the boundary” of p-adic weight space. We also prove in tame level 1 that
the coefficients of the Fredholm series of the Up operator never vanish modulo p, a phenomenon
that fails at higher level. In higher level, we do check that infinitely many coefficients are non-zero
modulo p using a modular interpretation of the mod p reduction of the Fredholm series recently
discovered by Andreatta, Iovita and Pilloni.
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1. Introduction

A recent preprint of Wan, Xiao and Zhang contains a conjecture (see [22, Conjecture 2.5]) which
makes precise a folklore possibility, inspired by a theorem of Buzzard and Kilford [7], regarding the
slopes of p-adic modular forms near the “boundary of weight space”.

The conjecture comes in two parts. First, the slopes of overconvergent p-adic eigenforms at
weights approaching the boundary should change linearly with respect to the valuation of the
weight. The second part of the conjecture is that these slopes, after normalizing by this conjectured
linear change, form a finite union of arithmetic progressions. The main goal in this paper is to
prove that the second conjecture is a consequence of the first.

Implicit in the conjecture is a simple and beautiful description of these slopes: near the boundary
the slopes arise from a scaling of the Newton polygon of the mod p reduction of the Fredholm series
of the Up operator. The first half of this paper is devoted to studying this characteristic p object
using a p-adic version of the trace formula discovered by Koike in the 1970s [15]. Our main result
in this direction is that this mod p Fredholm series is not a polynomial, i.e. it is a true power series
with infinitely many non-zero coefficients. This observation in turn is an important step in the
deduction of the main theorem.

Regarding the broader context, work of Andreatta, Iovita and Pilloni (see [1]) have brought to
light an extraordinary theory, envisioned by Robert Coleman, of overconvergent p-adic modular
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forms in characteristic p! The connection with the characteristic zero theory is a modular inter-
pretation of the mod p reduction of the Fredholm series of Up. Our results on this mod p reduction
show that there are infinitely many finite slope eigenforms in characteristic p and our methods give
a concrete way to understand this new characteristic p theory.

1.1. We begin setting notation now. We fix a prime p and an integer N ≥ 1, called the tame
level, such that (N, p) = 1. If k ∈ N is an integer and Γ ⊆ SL2(Z) is a congruence subgroup then
we denote by Mk(Γ) the space of classical modular forms of weight k and level Γ. Similarly, Sk(Γ)
denotes the space of cusp forms. We also let Sk(Γ1(M), χ) denote the space of cusp forms of level
Γ1(M) with character χ : (Z/MZ)× −→ C×.

1.2. Choose an embedding Q ↪→ Qp and use this to make a choice of a p-adic valuation on Q

satisfying vp(p) = 1. We also choose an isomorphism C ' Qp. Using this isomorphism we view

spaces of modular forms as vector spaces over Qp.

1.3. Let ∆ ⊂ Z×p be the multiplicative torsion subgroup and write Z×p
∼= ∆×Γ where Γ = 1 +pZp

if p is odd and Γ = 1 + 4Z2 if p = 2. Let A be an affinoid Qp-algebra. The p-adic weight space W
is defined on A-points by

W(A) = Homcont(Z
×
p , A

×).

Weight space is a union of open discs. Explicitly, we can give a coordinate w(κ) on W by w(κ) :=
κ(γ)− 1 where γ ∈ Γ is some fixed topological generator. The coordinate w(κ) does not determine
κ as it does not depend on κ

∣∣
∆

. But, we have a natural isomorphism

W(A) ∼= Hom(∆, A×)×
{
z ∈ A : vsup

A (z) > 0
}

(1.3.1)

κ 7→ (κ
∣∣
∆
, w(κ)),

where vsup
A (−) denotes the valuation corresponding to the supremum semi-norm on A.1 Denote by

∆̂ the group of characters ∆→ C×p . Thus we can write

W =
⋃
η∈∆̂

Wη

where Wη =
{
κ : κ

∣∣
∆

= η
}

is an open p-adic unit disc. We say that Wη is an even component if
η is an even character, i.e. η(−1) = 1. Finally, note that the isomorphism (1.3.1) depends on the
choice of γ, but vp(w(κ)) does not.

1.4. For each κ ∈ W(Cp), Coleman has defined in [11] spaces of overconvergent p-adic modular

forms M †κ(N) of tame level Γ0(N) (note that we suppress the choice of p in the notation). There

are also close cousins S†κ(N) of cusp forms. Each of M †κ(N) and S†κ(N) is an LB-space (a compact
inductive limit of Banach spaces) and there is the usual Hecke action where, in particular, Up acts
compactly. These spaces are trivial unless κ is even because we work in level Γ0(N).

To be more precise, if v > 0 is a rational number then one has the notion of v-overconvergent
p-adic modular forms Mκ(N)(v) of tame level Γ0(N), which form a p-adic Banach space (using
the notation from [9, Section B.2]). If 0 < v′ < v then there is an injective transition map

Mκ(N)(v) ↪→Mκ(N)(v′) which is compact and M †κ(N) = lim−→v>0
Mκ(N)(v) is their directed limit.

For v sufficiently small, the Up-operator is a continuous operator Mκ(N)(v) → Mκ(N)(pv) which
then defines a compact endomorphism of Mκ(N)(v). The characteristic series of Up acting on
Mκ(N)(v) is independent of 0 < v sufficiently small and we write det(1− tUp

∣∣
M†κ(N)

) for this series.

1The set of z ∈ A for which vsup
A (z) > 0 is the set of topologically nilpotent elements in A. Equivalently, it is the

set of a ∈ A such that vp(a(x)) > 0 for all x ∈ Sp(A) [4, Proposition 6.2.3/2].
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Most of this article will focus on the characteristic series for cusp forms S†κ(N) and thus we make
the notation

P (κ, t) = det(1− tUp
∣∣
S†κ(N)

) ∈ Qp(κ)[[t]].

The series P (κ, t) differs from det(1− tUp
∣∣
M†κ(N)

) only by a factor corresponding to ordinary Eisen-

stein families. For example, if N = 1 then this factor is simply 1− t.

1.5. By Coleman’s work [11], P (κ, t) is analytic in κ and in fact the coefficients of P (κ, t) are
defined by power series over Zp in κ (we explain this in Theorem 2.5 below). Explicitly, for each
component Wη ⊂ W, there exists power series ai,η(w) ∈ Zp[[w]] such that

κ ∈ Wη =⇒ P (κ, t) = 1 +
∞∑
i=1

ai,η(w(κ))ti.

1.6. If k ∈ N then we may consider the character (z 7→ zk) ∈ W(Qp). There is a canonical em-

bedding Mk(Γ0(Np)) ↪→M †
zk

(N) which is equivariant for the corresponding Hecke action. Slightly

more generally, if χ : (Z/ptZ)× → Q
×
p is a primitive Dirichlet character and k ∈ Z there is also a

Hecke equivariant embedding Mk(Γ1(Npt), χ) ↪→M †
zkχ

(N).

We refer to the images of these embeddings, as you run over all k and all χ, as the classical
subspaces. The weights

{
zk
}

and
{
zkχ

}
are called the algebraic and locally algebraic weights.

Their union is referred to as the set of arithmetic weights. It is worth pointing out the following
regarding the valuations of arithmetic weights:

Lemma 1.6. Let k ∈ Z and χ be a primitive Dirichlet character modulo pt.

(a) v2(w(zk)) = 2 + v2(k) and if p > 2 then vp(w(zk)) = 1 + vp(k).

(b) If t ≥ 3 then v2(w(zkχ)) = 1
2t−3 .

(c) If p > 2 and t ≥ 2 then vp(w(zkχ)) = 1
φ(pt−1)

= 1
pt−2(p−1)

.

Proof. The first computation is an immediate application of the binomial theorem. The proof of
(b) is just as the proof of (c), so now let’s assume that p is an odd prime. Note that γ ∈ Γ is a
generator for the kernel of the reduction map (Z/ptZ)× → ∆ ' (Z/p)×. In particular, χ(γ) = ζpt−1

is a primitive pt−1st root of unity. Then, since γk ≡ 1 (mod p) and vp(ζpt−1 − 1) < 1, we get that

vp(γ
kχ(γ)− 1) = vp(ζpt−1 − 1) =

1

φ(pt−1)

as t ≥ 2. This concludes the proof. �

1.7. Lemma 1.6 explains that arithmetic weights live in two separate regions of weight space:

• If p is odd then the algebraic weights zk all live in the “center region” vp(−) ≥ 1. If p = 2

and k is even then the algebraic weights zk live in the region v2(−) ≥ 3.
• If p is odd then the locally algebraic weights of conductor at least p2 live in an “outer region”
vp(−) ≤ 1

p−1 < 1. If p = 2 then the locally algebraic weights of conductor at least 8 lie in

the region v2(−) ≤ 1 < 3.

1.8. Fix a component Wη ⊂ W. Since ai,η is a power series over Zp, the Weierstrass preparation
theorem implies that, if ai,η 6= 0, then we can write ai,η = pµf(w)u(w) where

• f(w) = wλ+ · · · ∈ Zp[w] is a monic polynomial of degree λ ≥ 0 which is a monomial modulo
p,
• µ is a non-negative integer, and
• u(w) is a unit in Zp[[w]].
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We note that λ is the number of zeroes of ai,η(w) in the open unit disc vp(−) > 0. Furthermore,
µ and λ do not depend on the choice of γ and neither does vp(ai,η(w0)) for a fixed w0 in Wη. In
particular, the following questions are completely independent of the choice of γ.

• What is µ(ai,η)?
• What is λ(ai,η) and what are the slopes of the zeroes of ai,η?
• What is the Newton polygon of P (w0, t), for a fixed weight w0?

For the remainder of the introduction, we focus on the first and the last of these questions. See
Section 4 for the middle question.

1.9. For κ ∈ W, write ν1(κ) ≤ ν2(κ) ≤ · · · for the slopes of the Newton polygon of P (κ, t) (or,

equivalently, the slopes of Up acting on S†κ(N)). The following is a reformulation of [22, Conjecture
2.5] (see also [17]).

Conjecture 1.9. For each component Wη, there exists an r > 0 such that:

(a) For κ ∈ Wη, the Newton polygon of P (κ, t) depends only on vp(w(κ)) if 0 < vp(w(κ)) < r.
Moreover, on the region 0 < vp(−) < r, the indices of the break points of the Newton polygon
of P (κ, t) are independent of κ.

(b) If i is the index of a break point in the region 0 < vp(−) < r then µ(ai,η) = 0.

(c) The sequence {νi(κ)/vp(w(κ))} is a finite union of arithmetic progressions, independent of
κ, if 0 < vp(w(κ)) < r and κ ∈ Wη.

1.10. Conjecture 1.9 is known completely in only two cases: when p = 2 or p = 3 and N = 1. The
case p = 2 is due to Buzzard and Kilford [7]. The case p = 3 is due to Roe [19]. In the case where
either p = 5 or p = 7 and N = 1, Kilford [13] and Kilford and McMurdy [14] verified part (c) for a
single weight.

More recently, Liu, Wan and Xiao have proven the analogous conjecture in the setting of overcon-
vergent p-adic modular forms for a definite quaternion algebra [17, Theorems 1.3 and 1.5]. By the
Jacquet–Langlands correspondence, their results give striking evidence for, and progress towards,
Conjecture 1.9.

1.11. Let’s reframe Conjecture 1.9 in terms which hint at the approaches we’ve mentioned being
developed separately by Andreatta, Iovita and Pilloni [1] and Liu, Wan, and Xiao [17].

On a fixed component Wη, write P (w, t) := Pη(w, t) = 1 +
∑
ai,η(w)ti ∈ Zp[[w, t]] for the two-

variable characteristic power series of Up and P (w, t) ∈ Fp[[w, t]] for its mod p reduction. Viewing

P (w, t) as a one-variable power series in t over Fp[[w]], it has a Newton polygon which we call the

w-adic Newton polygon of P (w, t).

We can rephrase Conjecture 1.9(a,b) in terms of the Newton polygon of P (w, t).

Conjecture 1.11. For each component Wη, there exists an r > 0 such that if κ ∈ Wη and
0 < vp(w(κ)) < r then the Newton polygon of P (w(κ), t) equals the w-adic Newton polygon of

P (w, t) scaled by vp(w(κ)).2

The equivalence of Conjecture 1.11 and Conjecture 1.9(a,b) is proven in Proposition 3.3. The
proof makes key use of Corollary A2 below.

Remark. In [1], Andreatta, Iovita and Pilloni give a modular interpretation of P (w, t) as the char-
acteristic power series of a compact operator acting on an Fp((w))-Banach space.

2By the scaling of a Newton polygon, we mean the vertical scaling of all points on the Newton polygon.
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1.12. We now state our first result which implies Conjecture 1.9(b) in the case of tame level 1.

Theorem A (Theorem 2.8). If N = 1 and η is even then µ(ai,η) = 0 for each i ≥ 1.

Our proof of Theorem A (see Section 2) makes use of an older tool: Koike’s computation of the
traces of Hecke operators via a p-adic limit of the Eichler–Selberg trace formula [15].

The assumption that N = 1 is necessary for Theorem A (compare with Example 4.3). However,
we can also show that the µ-invariants of the ai vanish infinitely often in higher tame level (see
Corollary A2). We thank Vincent Pilloni for suggesting the corollaries that follow.

1.13. In [1], Andreatta, Iovita and Pilloni construct, for each component Wη, an Fp((w))-Banach

space M
†
κη(N) of “overconvergent p-adic modular forms in characteristic p” equipped with a com-

pact operator Up. By [1, Corollaire 1.1] the characteristic power series of Up acting on M
†
κη(N) is

equal to P (w, t). Thus an immediate corollary of Theorem A is:

Corollary A1. For all tame levels N and every even component Wη, there exists infinitely many

finite slope eigenforms for Up in M
†
κη(N).

Proof. If N = 1, Theorem A implies that the characteristic power series det(1 − tUp
∣∣
M
†
κη (1)

) =

P (w, t) is not a polynomial. Thus, the infinitely many roots of P (w, t) correspond to infinitely

many finite slope eigenform for Up in M
†
κη(1).

For N > 1, the theory in [1] implies that the usual degeneracy maps between modular curves

induce an injective Up-equivariant embedding M
†
κη(1) ↪→ M

†
κη(N). Since M

†
κη(1) has infinitely

many finite slope forms, the same is true for M
†
κη(N). �

Remark. Coleman deduced that there are infinitely many finite slope overconvergent p-adic eigen-
forms for Up acting in a classical weight k using a similar argument (see [11, Proposition I4]).

Corollary A2. For each fixed N ≥ 1 and even η, we have µ(ai,η) = 0 for infinitely many i.

Proof. This is equivalent to the statement that det(1 − tUp
∣∣
M
†
κη

(N)
) is not a polynomial which

follows immediately from Corollary A1. �

Remark. One could also argue that characteristic power series in tame level 1 divides the one in
tame level N as entire functions over weight space. The same would then follow for their mod p
reductions. Since the mod p reduction of the tame level 1 series is not a polynomial by Theorem
A, the series in tame level N is not a polynomial either. This gives a direct argument for Corollary
A2 allowing us to reverse the logic above and deduce Corollary A1 from Corollary A2.

1.14. Our second result identifies the essential part of Conjecture 1.9. We show that if the Newton
polygons at weights near the boundary behave uniformly in the weight (i.e. Conjecture 1.9(a)), then
it is automatic that the µ-invariants of the ai vanish whenever i is breakpoint (Conjecture 1.9(b))
and the slopes near the boundary form a finite union of arithmetic progressions (Conjecture 1.9(c)).

Theorem B (Theorems 3.2 and 3.4). If Conjecture 1.9(a) holds on 0 < vp(−) < r for every even
component of weight space then the same is true for Conjecture 1.9(b) and (c).

The implication (a) implies (b) follows easily from Corollary A2 and is Theorem 3.2 in the text.
The proof we give for (a) implies (c) (see Theorem 3.4) again uses a classical tool (the Atkin-Lehner
involutions on cuspforms with nebentype) and a slightly more modern one (Coleman’s classicality
theorem for overconvergent cuspforms). A similar argument was noticed independently by Liu,
Wan and Xiao and used to complete the main result of their paper [17, Section 4.2]. We remark
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that our proof of (a) implies (b) holds component-by-component. However, our proof of (a) implies
(c) truly requires as an input that Conjecture 1.9(a) holds simultaneously on all components of
weight space.

1.15. One may also consider level Γ1(N). In that case, the results stated here in the introduction
remain true. Namely, Theorem A is obviously true still and its corollaries are nearly formal. The
reader may check that the proof of Theorem B carries over as well.

However if one fixes a tame character, or one works over odd components of p-adic weight space,
then our method of proof does not generalize to handle Corollaries A1 and A2. Indeed, the basic
method we use begins by examining the subspace of level 1 forms which only contributes to forms
with trivial nebentype on even components. If one could prove Corollary A2 in this case, then our
proof of Theorem B would carry over. We do though expect these results to hold in general.

Acknowledgements. The authors would like to thank Kevin Buzzard for extraordinary interest,
encouragement and comments on an early draft of this paper. We would also like to thank Liang
Xiao for several discussions pertaining to the two papers [22, 17]. We owe Vincent Pilloni for
discussing the application(s) of Theorem A to the work [1]. We duly thank Fabrizio Andreatta,
Matthew Emerton, Adrian Iovita and Glenn Stevens for helpful conversations. Finally, we thank
the anonymous referee for their helpful comments and suggestions. The first author was partially
supported by NSF grant DMS-1402005 and the second author was partially supported by NSF
grant DMS-1303302.

2. The trace formula and µ-invariants

In this section we will prove Theorem A (i.e. that µ(ai,η) = 0 in tame level 1). The key to our
proof is to explicitly write down the characteristic power series of Up, not with coefficients in Zp[[w]],
but in a coordinate free manner over Zp[[Γ]]. For this we will use an explicit formula for the traces
of Hecke operators [15, 12].

2.1. Consider the Iwasawa ring Zp[[Z
×
p ]]. If ρ ∈ Z×p then the function κ 7→ κ(ρ) defines an analytic

function [ρ] on the weight space W, and thus gives a natural inclusion Zp[[Z
×
p ]] ↪→ O(W). Natural

here refers to the canonical decompositions of Zp[[Z
×
p ]] and O(W) as we now explain.

Given a character η : ∆→ C×p , the group algebra Zp[∆] comes equipped with a map Zp[∆]→ Zp
which evaluates group-like elements on η. If ρ ∈ Z×p let ρ be its image in ∆ under the splitting

Z×p
∼= ∆×Γ. For η ∈ ∆̂ we write [ρ]η := η(ρ) ·

[
ρ · ω(ρ)−1

]
∈ Zp[[Γ]] where ω denotes the Teichmüller

character.3 Then we have a Zp-module embedding

Zp[[Z
×
p ]] ↪→

⊕
η

Zp[[Γ]](2.1.1)

[ρ] 7→ ([ρ]η)η∈∆̂

This map is an isomorphism for p > 2, or after inverting p. Similarly, the components of weight space
are also indexed by characters η, and the canonical embedding above preserves the components.
That is, we have a commuting diagram

Zp[[Z
×
p ]]
� _

��

� � //
⊕

η Zp[[Γ]]
� _

��

O(W)
⊕

ηO(Wη).

3We explicitly see ω as the composition Z×p � ∆ ⊂ Z×p , making Z×p the domain of ω in order to make ω a p-adic

weight. By construction one has ω(ρ) = ω(ρ) for all ρ ∈ Z×p and thus ρ · ω(ρ)−1 ∈ Γ for such ρ.
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2.2. It is well-known that there is an isomorphism of rings

Zp[[Γ]]
'−→ Zp[[w]]

[γ] 7→ w + 1.

Thus we can define the µ and λ-invariants of elements of Zp[[Γ]] via this isomorphism. They do not
depend on the choice of γ.

Lemma 2.2. If f =
∑

g cg[g] ∈ Zp[[Γ]] with cg = 0 for all but finitely many g, then µ(f) = 0 if and

only if there exists some g ∈ Γ such that cg ∈ Z×p .

Proof. One direction is clear, so let us prove that if some cg is a unit then µ(f) = 0. Let [g1], . . . , [gr]
be the terms of f with cgi 6= 0. Choose an n sufficiently large so that the images gi of gi in Γ/Γp

n

are all distinct. Then the image of f in the quotient Zp[Γ/Γ
pn ] is given by

∑
cgi [gi]. But the [gi]

are all distinct and form a subset of a basis for the finite free Zp-module Zp[Γ/Γ
pn ]. In particular,

if some cgi is a unit, then f 6≡ 0 mod p, and hence f 6≡ 0 mod p. �

Remark. The same argument shows that if f 6= 0 is as in the lemma then

µ(f) = min {n : cg ≡ 0 mod pn for all g} .

2.3. If s, j ≥ 1 are integers and p - s then the quadratic polynomial Φs,j(X) := X2 − sX + pj

factors (say over Q) as

X2 − sX + pj = (X − ρs,j)(X − ρs,j).
Under our fixed embedding Q ↪→ Qp, this polynomial has exactly one root which is a p-adic unit;
we label this root by ρs,j . Viewing this polynomial over C, its roots are complex conjugates when

1 ≤ s < 2pj/2, in which case the complex absolute value of ρs,j is pj/2. We make a slightly more
general observation in the following lemma.

Lemma 2.3. If e = {e(s, j)} is a finite collection of positive integers, depending on pairs (s, j)

such that 1 ≤ s < 2pj/2, then ρe :=
∏
s,j ρ

e(s,j)
s,j is not a root of unity.

Proof. We just explained that |ρs,j |∞ = pj/2 > 1 for any choice of complex absolute value |−|∞. In
particular, |ρe|∞ > 1 as well, meaning that ρe cannot be a root of unity. �

2.4. The quadratic surds ρs,j and ρs,j classically play a role in explicit formulae for the trace of
Tpj acting on spaces Sk(Γ0(N)) of cuspidal modular forms. Here we recall what happens when one
passes to the space of overconvergent cuspforms for Γ0(N).

Theorem 2.4 (Koike’s formula). Suppose that N, j ≥ 1 are integers. Then there exists constants
cN (p, j) and cN (p, s, j) in Zp such that for each even integer k,

tr(U jp
∣∣
S†k(N)

) = −cN (p, j)−
∑

1≤s<2pj/2

p-s

cN (p, s, j)

ρ2
s,j − pj

ρks,j .

Proof. In the case N = 1, this is [15, Theorem 1]. We quickly sketch the general argument since
this is well-known to experts. A combination of Coleman’s control theorem (see Theorem 3.9(a)
below), the theory of newforms, and the gluing of spaces of overconvergent cuspforms over weight
space implies that for each integer k,

(2.4.1) tr(U jp
∣∣
S†k(N)

) = lim
n→∞

tr(Tpj
∣∣
Sk+pn(p−1)(Γ0(N))

),

the limit being a p-adic limit. For n sufficiently large, k + pn(p − 1) ≥ 2 and so one can evaluate
the limit using the explicit trace formula Hijikata gives in [12, Theorem 0.1]. The limit is easily
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computed from the description given by Hijikata once we note that the Hecke operators there are
off by a factor of pk/2−1 from ours (compare with [15, Section 2.2]). �

Remark. We will make explicit these constants in the case N = 1 in the following section and in
general in Appendix II. For now, we just note that each cN (−) is a p-adically integral algebraic
number which a computer can effectively compute.

2.5. For the remainder of Section 2 we fix an even component Wη. For each j ≥ 1, we denote

by Tj ∈ O(Wη) the function κ 7→ tr(U jp
∣∣
S†κ(N)

). Koike’s formula shows that Tj lies in the subring

Zp[Γ] ⊂ Zp[[Γ]] ⊂ O(Wη).

Theorem 2.5 (Koike’s formula II). If j ≥ 1 then Tj ∈ Zp[Γ] and is given by

Tj = −cN (p, j)[1]η −
∑

1≤s<2pj/2

p-s

cN (p, s, j)

ρ2
s,j − pj

[ρs,j ]η

where the notation is the same as in Theorem 2.4.

Proof. When we evaluate the right-hand side of the given formula at zk ∈ Wη we get Tj(z
k) by

Theorem 2.4. Since the integers inside Wη accumulate on themselves, the formula follows from the
analyticity of Tj . �

2.6. In order to prove Theorem A, we need to make the constants explicit in Koike’s formula when
N = 1. The constants arise from the explicit form of the Eichler–Selberg trace formula for the
Hecke operators Tpj on cuspforms for SL2(Z) given by Zagier in an appendix to Lang’s book [16]
(see also the correction [23]).

We denote by H : Z → Q the Hurwitz class numbers defined by H(0) = −1/12, H(n) = 0 if
n < 0 and H(n) is the number of equivalence classes of positive definite binary quadratic forms of
discriminant −n counted with certain multiplicities (depending on n mod 3). Then, it is easy to
compute from [16, Theorem 2, p. 48] and (2.4.1) that the constants in Koike’s formula are given by

c1(p, j) = 1,

c1(p, s, j) = H(4pj − s2).

Specializing Theorem 2.5 to the case N = 1 we get

Corollary 2.6 (N = 1). If j ≥ 1 then

Tj = −[1]η −
∑

1≤s<2pj/2

p-s

H(4pj − s2)

ρ2
s,j − pj

[ρs,j ]η.

2.7. The characteristic power series 1 +
∑

i≥1 ai(κ)ti := det(1− tUp
∣∣
S†κ(N)

) of Up over the weights

in Wη can be computed in terms of Tj . Indeed, [20, Corollaire 3] implies that for each κ ∈ Wη,

1 +
∑
i≥1

ai(κ)ti = det(1− tUp
∣∣
S†κ(N)

) = exp

−∑
j≥1

tr(U jp
∣∣
S†κ(N)

)
tj

j

 .

Unwinding, we get the classical symmetric functions identities

(2.7.1) a0 = 1 ai = −1

i

i∑
j=1

ai−jTj

(Note: The ai written here are the ai,η from the introduction.)
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2.8. We’re now ready to show the vanishing of the µ-invariants for the coefficients of the charac-
teristic power series in tame level N = 1.

Theorem 2.8 (N = 1). For each i ≥ 1, µ(ai) = 0.

Proof. Obviously if we define a0 = 1 and ai recursively as iai = −
∑i

j=1 ai−jTj then for reasons

already stated we have ai ∈ Zp[Γ] ⊂ O(Wη).

If e = {e(s, j)} is a collection of integers then we denote by ρe =
∏
s,j ρ

e(s,j)
s,j ∈ Z×p , the same

element as in Lemma 2.3. We claim by induction on i ≥ 1 that

(2.8.1) ai = [1]η +
∑
ρe 6=1

ce[ρe]η ∈ Zp[Γ]

where ce 6= 0 for all but finitely many e. If we prove this claim then the proof of the theorem is
complete. Indeed, if ρe 6= 1 then ρe/ω(ρe) 6= 1 by Lemma 2.3, and so [ρe]η is not a scalar multiple
of [1]η. In particular, µ(ai) = 0 by Lemma 2.2.

Let’s prove the claim. For i = 1 we have a1 = −T1 so the claim follows from Corollary 2.6.
Suppose that i > 1. By Lemma 2.3, if either ρe 6= 1 or ρe′ 6= 1 then ρeρe′ 6= 1. Thus, by induction
on j = 1, . . . , i− 1 and Corollary 2.6 we see that

ai−jTj =

[1]η +
∑
ρe 6=1

ce[ρe]η

−[1]η +
∑
ρf 6=1

df [ρf ]η

 = −[1]η +
∑
ρg 6=1

hg[ρg]η.

Using the recursive formula (2.7.1) for iai we see that

iai = i[1]η + higher terms

and, dividing by i, this completes the proof of the claim. (Note that we know a priori that the
higher terms are all divisible by i since ai is an Iwasawa function.) �

Remark. It’s a bit of a miracle that the trace formula yields such uniform information. If instead

we worked on the full space M †κ(1) of overconvergent modular functions then the unique ordinary
Eisenstein family would erase the group-like element [1] in the Koike’s formula. Suddenly, the
vanishing of the µ-invariants is “not obvious” even for the functions Tj , let alone the ai. Staying
with cuspforms but working in level N > 1, the same kind of issue arises as cN (p, j) need not be 1
(compare with Lemma II.1).

3. Boundary slopes and arithmetic progressions

In this section we prove Theorem B; that is, we prove that Conjecture 1.9(a) implies Conjecture
1.9(b,c). Throughout this section we implicitly assume every component Wη of weight space is
even (since we work with level Γ0(N)).

3.1. For each component Wη ⊂ W, we have a characteristic power series for cuspforms

P (w, t) = 1 +

∞∑
i=1

ai(w)ti ∈ 1 + tZp[[w, t]].

Here we set ai = ai,η for ease of notation. We replicate here Conjecture 1.9(a) which we are going
to assume for all of Section 3.

Conjecture 3.1. There exists r > 0 such that if κ ∈ Wη and 0 < vp(w(κ)) < r then the Newton
polygon of P (κ, t) depends only on vp(w(κ)). Moreover, on this region the indices of the break points
of the Newton polygon of P (κ, t) are independent of κ.
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Note that since W has finitely many components, Conjecture 3.1 is true for each component Wη

if and only if it is true with one uniform r > 0 for all components. Note as well that the break
points in Conjecture 3.1 may well depend on the component but do not depend on the choice of r
(for which the conjecture is valid at least).

3.2. In this section, using Corollary A2, we prove the first half of Theorem B. Namely, we show
that Conjecture 3.1 implies that µ(ai) = 0 whenever i is one of the break points of the Newton
polygon near the boundary.

We begin with a simple lemma on the p-adic valuation of values of Iwasawa functions.

Lemma 3.2. Let f ∈ Zp[[Γ]] be non-zero, and assume all of the zeroes of f in the open unit disc
have valuation at least r. Then for z ∈ Cp with 0 < vp(z) < r, we have

vp(f(z)) = µ(f) + λ(f) · vp(z).

Proof. Let w1, w2, . . . , wλ(f) denote the roots of f . We have

vp(f(z)) = µ(f) +

λ(f)∑
j=1

vp(z − wj) = µ(f) +

λ(f)∑
j=1

vp(z) = µ(f) + λ(f) · vp(z)

where the second equality follows since vp(z) < r ≤ vp(wj) for each j. �

Theorem 3.2. Conjecture 3.1 implies Conjecture 1.9(b).

Proof. Let I = {i1 < i2 < · · · } denote the break points of the Newton polygon of P (w0, t) over the
region 0 < vp(w0) < r. Formally set i0 = 0 and a0 = 1. We prove by induction on k ≥ 0 that
µ(aik) = 0. The case where k = 0 is by choice of a0.

Now suppose that k ≥ 1. By Corollary A2, we may choose an integer i such that i ≥ ik and
µ(ai) = 0. Since ik is a break point of the Newton polygon, we know that

(3.2.1)
vp(aik(w0))− vp(aik−1

(w0))

ik − ik−1
≤
vp(ai(w0))− vp(aik−1

(w0))

i− ik−1

for all 0 < vp(w0) < r. Choose a rational number r′ ≤ r such that all three functions aik−1
, aik , ai

are non-vanishing on 0 < vp(w0) < r′. Then, if 0 < vp(w0) < r′, Lemma 3.2 implies

µ(aik)

ik − ik−1
+

(
λ(aik)− λ(aik−1

)
)
vp(w0)

ik − ik−1
≤
(
λ(ai)− λ(aik−1

)
)
vp(w0)

i− ik−1
.

Here we are using the vanishes of the µ-invariants of ai and aik−1
(which we know by induction).

In particular, taking vp(w0)→ 0, we see that µ(aik) = 0 as desired. �

3.3. We recall that in the introduction we reformulated Conjecture 3.1 in terms of the w-adic
Newton polygon of P (w, t). In this section, we verify the equivalence of this reformulation.

Proposition 3.3. Conjecture 3.1 is equivalent to Conjecture 1.11.

Proof. It is clear that Conjecture 1.11 implies Conjecture 3.1. Conversely, suppose that Conjecture
3.1 is true. Write I = {i1 < i2 < · · · } for the break points of the Newton polygon on 0 < vp(w0) < r
and λi := λ(ai). By Theorem 3.2, µ(aij ) = 0 for each j. Since ij is the index of a break point at
each weight 0 < vp(w0) < r, clearly aij (w0) 6= 0 at such w0. So, by Lemma 3.2 the break points of
the Newton polygon of P (w0, t) are given by

(ij , vp(aij (w0))) = (ij , λijvp(w0))

at each 0 < vp(w0) < r. Thus, to prove the proposition we need to show that the break points of

the w-adic Newton polygon of P (w, t) are
{

(ij , λij ) : j = 1, 2, . . .
}

.
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Set i0 = 0 and λi0 = 0. We claim that if j ≥ 0, ij < i and µ(ai) = 0 then

(3.3.1)
λij+1 − λij
ij+1 − ij

?
≤
λi − λij
i− ij

with a strict inequality if ij+1 < i. Given this claim, the proposition follows by the definition of
the Newton polygon. (Note that µ(ai) must vanish if the point (i, λi) actually lies on the w-adic
Newton polygon.)

Let’s show the claim. Fix j ≥ 0 and i > ij such that µ(ai) = 0. Choose 0 < r′ < r such that the
roots of the three functions ai(w), aij (w) and aij+1(w) all lie in the region vp(−) ≥ r′. Now choose
any weight w0 such that 0 < vp(w0) < r′. Since {i1, i2, . . . } are the break points of the Newton
polygon of P (w0, t) we know, by definition, that

(3.3.2)
vp(aij+1(w0))− vp(aij (w0))

ij+1 − ij
≤
vp(ai(w0))− vp(aij (w0))

i− ij
with a strict inequality if ij+1 < i. Then, we observe that Lemma 3.2 and Theorem 3.2 imply that
vp(a`(w0)) = λ` · vp(w0) for ` ∈ {i, ij , ij+1}. Thus the inequality (3.3.2) is the inequality (3.3.1)
scaled by vp(w0). This completes the proof. �

3.4. We now move on to the arithmetic properties of the slopes and prove the second half of

Theorem B; namely, Conjecture 3.1 implies
{

νi(κ)
vp(w(κ)) : i = 1, 2, . . .

}
is a finite union of arithmetic

progressions independent of κ. The argument we give intertwines the various components of weight
space. For this reason, we will assume r is small enough so that it is witness to Conjecture 3.1 on
every component simultaneously.

Theorem 3.4. Assume Conjecture 3.1 holds for every component and choose an r which witnesses
the conjecture on every component simultaneously. For a fixed component Wη, the sequence{

νi(κ)

vp(w(κ))
: i = 1, 2, . . .

}
is a finite union of arithmetic progressions independent of κ if 0 < vp(w(κ)) < r with κ ∈ Wη.

Remark. Assuming Conjecture 3.1, we give an explicit description of these arithmetic progressions
in terms of slopes of Up acting on various spaces of classical cuspforms of weight two (see Theorem
3.10). Examples are given in Sections 3.13–3.15.

3.5. We begin by checking that the sequence in Theorem 3.4 is independent of κ.

Proposition 3.5. Assume Conjecture 3.1 holds on 0 < vp(−) < r for a fixed component Wη. The
sequence {

νi(κ)

vp(w(κ))
: i = 1, 2, 3, . . .

}
.

is independent of κ if 0 < vp(w(κ)) < r and κ ∈ Wη.

Proof. By Proposition 3.3, Conjecture 1.11 holds (as it is equivalent to Conjecture 3.1). But
Conjecture 1.11 implies that the Newton polygon scaled by 1/vp(w(κ)) is independent of κ if
0 < vp(w(κ)) < r and κ ∈ Wη. In particular, the sequence of this proposition is independent of
such κ. �

Remark. It is easy to see that νi(κ)/vp(w(κ)) is not necessarily an integer. For example, if p = 2
and N = 3 then the sequence begins 1

2 ,
1
2 , 1, 1, . . . (conjecturally, see Section 3.14).
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3.6. Given the previous remark, let us be specific about what we mean by a finite union of
arithmetic progressions.

Definition. A sequence {xn : n = 1, 2, . . . } of rational numbers is called an arithmetic progression
if there exists a rational number x and an integer m ≥ 1 such that xi = x+mi for for all i ≥ 1.

For example, 1
2 , 1,

3
2 , 2, . . . is the union of two arithmetic progressions under our definition. (We

admit one could take other definitions allowing m to be anything). On the other hand, it is the
scaling of 1, 2, 3, . . . by the rational 1

2 . We leave the following elementary lemma for the reader,
but note that the previous examples shows it becomes false if we remove the words “finite union
of” from the statement.

Lemma 3.6. Let y 6= 0 be a rational number. Then a sequence {xn : n = 1, 2, . . . } is a finite
union of arithmetic progressions if and only if {yxn : n = 1, 2, . . . } is a finite union of arithmetic
progressions.

3.7. We set some helpful notation on slopes of modular forms.

Definition. Suppose that κ ∈ W and X ⊂ [0,∞) is a set.

• We denote by νXκ the multiset of slopes appearing in S†κ(N) which are also in X, recorded

with multiplicities. We write ν†κ for ν
[0,∞)
κ .

• If κ = zkχ is an arithmetic weight of conductor pt then we write νcl,X
κ as the set of slopes

appearing in Sk(Γ1(Npt), χ) and contained in X, again counted with multiplicity. We write

νcl
κ for ν

cl,[0,∞)
κ .

There are obvious operations we can do on multisets of rational numbers. If ν and ν ′ are two
such sets we denote by ν ∪ ν ′ their union as a multiset. If e ≥ 1 is an integer then we write ν⊕e for
the e-fold union

ν⊕e := ν ∪ · · · ∪ ν︸ ︷︷ ︸
e

.

If m is an integer then we also write

m± ν = {m± v : v ∈ ν} .

3.8. We now recall two theorems on slopes of modular forms. Let t ≥ 1 be an integer and

χ : (Z/ptZ)× → Q
×
p be a primitive Dirichlet character.

Proposition 3.8. There exists an involution wpt : Sk(Γ1(Npt), χ) → Sk(Γ1(Npt), χ−1) such that

if f is a eigenform then wpt(f) is also an eigenform whose Up eigenvalue is given by pk−1ap(f)−1.

Proof. The operator is usually described, up to a scalar depending on k, as the slash action of a
certain matrix (see [18, Theorem 4.6.16]). Adelically one considers the corresponding automorphic
representations π(f) and π(f)⊗ χ−1. One checks using the theory of the new vector that the level
at p is preserved. The computation of the Hecke eigensystems goes back to Casselman [8, Section
3]. �

The involution wpt is often called the Atkin–Lehner involution.

Corollary 3.8. We have νcl
zkχ

= k − 1− νcl
zkχ−1.
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3.9. We now state the relationship between ν†κ and νcl
κ . In small slopes, the relationship is given

by Coleman’s control theorem. We also need the more delicate “boundary case” in Coleman’s
work. In what follows, we let e(N) denote the number of p-ordinary Eisenstein families for Γ0(N)
or equivalently the number of cusps of X0(N).

Theorem 3.9. Suppose that κ = zkχ is an arithmetic weight. Then:

(a) ν
[0,k−1)

zkχ
= ν

cl,[0,k−1)

zkχ
.

(b) If κ 6= z2 and χ(−1) = (−1)k then ν
{k−1}
zkχ

= {k − 1}⊕e(N) ∪ (k − 1 + ν
{0}
z2−kχ

) ∪ νcl,{k−1}
zkχ

.

Proof. Both (a) and (b) are proved at the same time by using Coleman’s θ-operator. Namely,
if pt denotes the conductor of χ then for each rational number 0 ≤ ν ≤ k − 1 there is a linear

map θk−1 : M †
z2−kχ

(N)ν−(k−1) → S†
zkχ

(N)ν (the superscripts mean the “slope ν” part). Moreover,

ker(θk−1) = (0) except if κ = z2 (which we excluded in (b)) and coker(θk−1) may be identified with

Sk(Γ1(Npmax(t,1)), χ)ν . When χ is trivial then this is due to Coleman in [9, Sections 6 and 7]. The
non-critical slope case ν < k−1 with non-trivial character is also due to Coleman [10, Theorem 1.1].
The modifications for the critical slope ν = k− 1 case and non-trivial χ follow from [2, Proposition
2.5] (after specifying the p-part of the nebentypus everywhere in the displayed sequence).

With the θ-operator in hand, part (a) now follows because if ν < k−1 then M †
z2−kχ

(N)ν−(k−1) ⊂
M †
z2−kχ

(N)ν<0 = (0). And part (b) follows because M †
z2−kχ

(N)0 is spanned by S†
z2−kχ

(N)0 to-

gether with the e(N)-many ordinary p-adic Eisenstein series for Γ0(N) (under the assumption that
χ(−1) = (−1)k = (−1)2−k so the spaces are non-zero). �

3.10. Our strategy to prove Theorem 3.4 is to verify it for a single weight κ in each component
of weight space in the region 0 < vp(−) < r. (This suffices by Proposition 3.5.) We note that, by
Lemma 1.6, for each Wη, we can find arithmetic weights of the form κ = z2χ with χ finite order
and 0 < vp(w(κ)) < r.

Theorem 3.10. Assume Conjecture 3.1 holds for every component and choose an r < 1 which
witnesses the conjecture on every component simultaneously. Fix a component Wη, and choose
κ = z2χ ∈ Wη with χ finite order and 0 < vp(w(κ)) < r.

The set ν†
z2χ

is a finite union of arithmetic progressions. More specifically, if

νη,seed :=

{
1, . . . ,

|∆|
2

}⊕e(N)

∪

p−3
2⋃
j=0

(
j + νcl

z2χω−2j

)
,

then

ν†
z2χ

=

∞⋃
i=0

(
νη,seed + i · |∆|

2

)
.

Remark. Since r < 1 in Theorem 3.10, the conductor of χ is at least p2 if p is odd, or at least 16 if
p = 2. Thus by Lemma 1.6, we have vp(w(z2χ)) = vp(w(zkχ)) for any k ∈ Z. Thus, by Conjecture

3.1, the above theorem holds for weights of the form zkχ for any k ∈ Z.

Remark. By Proposition 3.5, Theorem 3.10 implies Theorem 3.4.

Remark. The prediction of the slopes in the theorem was guessed by Wan, Xiao and Zhang [22,
Remark 2.7]. As mentioned in the introduction, an argument similar to the one we are about to
give was noticed independently by Liu, Wan and Xiao in the sequel [17] to [22].
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Remark. An amusing feature of the end result is that the slopes in the component containing z2χ
are naturally generated by the slopes in other components of weight space. Is there a symmetry
giving rise to this phenomena?

The proof of Theorem 3.10 will appear in the next paragraph. But first, Theorem 3.10 expresses
the slopes of overconvergent p-adic cuspforms of a fixed weight z2χ (with χ even and sufficiently

ramified) as a union of arithmetic progressions with common difference |∆|2 . The following corollary,
whose proof we leave to the reader, shows that if we union together these slopes over all compo-
nents of weight space, the arithmetic progressions mesh nicely together and form a finite union of
arithmetic progressions with common difference 1.

Corollary 3.10. Assume Conjecture 3.1 holds for every component and choose an r < 1 which
witnesses the conjecture on every component simultaneously. Choose κ = z2χ ∈ W with χ finite

order, even and 0 < vp(w(κ)) < r. Set νseed := {1}⊕
|∆|e(N)

2 ∪
⋃
η

νcl
z2χη and ν† :=

⋃
η

ν†
z2χη

. Then

ν† =

∞⋃
i=0

(νseed + i) .

3.11. The technique we use to prove Theorem 3.10 is to examine the slopes in finite intervals and
then take their union and rearrange. We begin with the following proposition.

Proposition 3.11. Under the assumptions and notation of Theorem 3.10, if k > 2 is an integer
then

ν
[k−2,k−1)
z2χ

= {k − 2}⊕e(N) ∪
(

(k − 2)− νcl,{0}
z2χ−1ω2k−6

)
∪
(

(k − 1)− νcl,(0,1]

z2χ−1ω2k−4

)
.

Proof. We first note for later that χ is an even character since z2χ ∈ Wη and η is assumed to be

even. We also note that z2χ and zkχω2−k are two arithmetic weights living in the same component
of weight space and, by Lemma 1.6, they live on the same rim within their weight disc (i.e. have

the same valuation). Thus, since we are assuming Conjecture 3.1, we have ν
[k−2,k−1)
z2χ

= ν
[k−2,k−1)

zkχω2−k .

By Coleman’s control theorem, Theorem 3.9(a), we have

ν
[k−2,k−1)
z2χ

= ν
cl,[k−2,k−1)

zkχω2−k .

But now spaces of classical cuspforms with nebentypus have the Atkin-Lehner symmetries and so
by Corollary 3.8 we deduce

(3.11.1) ν
[k−2,k−1)
z2χ

= ν
cl,[k−2,k−1)

zkχω2−k = (k − 1)− νcl,(0,1]

zkχ−1ωk−2

(notice the careful switch of the ends of the interval). Thus it remains to compute the term on the
right-hand side.

By Coleman’s control theorem again, since k > 2, we can erase the classical bit from the last
part:

ν
cl,(0,1]

zkχ−1ωk−2 = ν
(0,1]

zkχ−1ωk−2 .

But now we apply Conjecture 3.1 to the weight zkχ−1ωk−2, which generally lives on a new com-
ponent than the one we started with (which is why we need to assume the conjecture for all
components at once). The two weights zkχ−1ωk−2 and z2χ−1ω2k−4 live in the same component of
W, so by Conjecture 3.1, we get the second equality in:

(3.11.2) ν
cl,(0,1]

zkχ−1ωk−2 = ν
(0,1]

zkχ−1ωk−2 = ν
(0,1]

z2χ−1ω2k−4 .
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And now we have to be a little careful, since slope one forms in a space of weight two overconvergent
cuspforms are not necessarily classical. We do know from Coleman’s control theorem that

(3.11.3) ν
(0,1)

z2χ−1ω2k−4 = ν
cl,(0,1)

z2χ−1ω2k−4 .

On the other hand, the boundary case of Coleman’s control theorem (Theorem 3.9(b) – note that
here we are using that χ is an even character), applied to k = 2, gives us

(3.11.4) ν
{1}
z2χ−1ω2k−4 = {1}⊕e(N) ∪

(
1 + ν

{0}
χ−1ω2k−4

)
∪
(
ν

cl,{1}
z2χ−1ω2k−4

)
.

Finally, since χ−1ω2k−4 lies in the same component as the weight two point z2χ−1ω2k−6, by Hida
theory (or Conjecture 3.1) and Theorem 3.9(a), we have

(3.11.5) 1 + ν
{0}
χ−1ω2k−4 = 1 + ν

{0}
z2χ−1ω2k−6 = 1 + ν

cl,{0}
z2χ−1ω2k−6 ,

Putting it all together gives

ν
[k−2,k−1)
z2χ

= (k − 1)− νcl,(0,1]

zkχ−1ωk−2 (by (3.11.1))

= (k − 1)− ν(0,1]

z2χ−1ω2k−4 (by (3.11.2))

= (k − 1)−
(
ν

cl,(0,1)

z2χ−1ω2k−4 ∪ {1}⊕e(N) ∪
(

1 + ν
{0}
χ−1ω2k−4

)
∪
(
ν

cl,{1}
z2χ−1ω2k−4

))
(by (3.11.3), (3.11.4))

= (k − 1)−
(
{1}⊕e(N) ∪

(
1 + ν

cl,{0}
z2χ−1ω2k−6

)
∪ νcl,(0,1]

z2χ−1ω2k−4

)
(by (3.11.5)).

We’re done now after distributing the k − 1 everywhere. �

3.12. We’re now ready to prove Theorem 3.10 and thus Theorem 3.4.

Proof of Theorem 3.10. By Theorem 3.9(a) and Corollary 3.8, we have

ν
[0,1)
z2χ

= ν
cl,[0,1)
z2χ

= 1− νcl,(0,1]
z2χ−1 .

For higher slopes we get, using Proposition 3.11, that

ν
[1,2)
z2χ

= {1}⊕e(N) ∪
(

1− νcl,{0}
z2χ−1

)
∪
(

2− νcl,(0,1]
z2χ−1ω2

)
,

ν
[2,3)
z2χ

= {2}⊕e(N) ∪
(

2− νcl,{0}
z2χ−1ω2

)
∪
(

3− νcl,(0,1]
z2χ−1ω4

)
,

ν
[3,4)
z2χ

= {3}⊕e(N) ∪
(

3− νcl,{0}
z2χ−1ω4

)
∪
(

4− νcl,(0,1]
z2χ−1ω6

)
,

... =
...

From this, we prove easily by induction that

ν†
z2χ

= {1, 2, 3, . . . }⊕e(N) ∪
⋃
j≥1

(
j − νcl,[0,1]

z2χ−1ω2(j−1)

)
.

By Corollary 3.8, we have

j − νcl,[0,1]

z2χ−1ω2(j−1) = j − (1− νcl,[0,1]

z2χω2(1−j)) = j − 1 + νcl
z2χω2(1−j)

so that

(3.12.1) ν†
z2χ

= {1, 2, 3, . . . }⊕e(N) ∪
⋃
j≥0

(
j + νcl

z2χω−2j

)
.
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If p = 2 then ω2 = 1, and we have proven the desired formula. Suppose now that p is odd. Since
ω has order p− 1, if j ≡ j′ mod p−1

2 we get ω2j = ω2j′ . Thus we also see that

j ≡ j′ mod
p− 1

2
=⇒ νcl

z2χω−2j = νcl
z2χω−2j′ .

Rewriting the large union in (3.12.1), we find that

⋃
j≥0

(
j + νcl

z2χω−2j

)
=

p−3
2⋃
j=0

∞⋃
i=0

(
(j + νcl

z2χω−2j ) +
p− 1

2
· i
)
.

Since

(3.12.2) {1, 2, 3, . . . }⊕e(N) =

∞⋃
i=0

({
1, . . . ,

p− 1

2

}⊕e(N)

+
p− 1

2
· i

)
,

the theorem is proven. �

3.13. If p = 2 and N = 1, then Buzzard and Kilford proved Conjecture 3.1 in [7] with r = 3. There
exists a unique even character χ8 of conductor 8 and v2(w(z2χ8)) = 1. Since S2(Γ1(8), χ8) = (0)

our recipe predicts that the slopes in S†
z2χ8

are given by 1, 2, 3, . . . which is consistent with what

was proven in [7].
On the other hand, there are two even characters χ16 modulo 16. And for each one, there is a

unique cusp form in S2(Γ1(16), χ16). The eigenvalue of U2 is checked (e.g. in sage [21]) to be −1± i
(depending on the character) and thus we see that the unique classical weight two slope is 1

2 . Our

prediction then is that the slopes are 1, 2, 3, . . . together with 0 + 1
2 , 1 + 1

2 , 2 + 1
2 , . . . = 1

2 ,
3
2 ,

5
2 . . . .

Again, this agrees with the results proven in [7] since v2(w(z2χ16)) = 1
2 .

3.14. Suppose that p = 2 and N = 3. Choose χ8 as in the previous example. The space
S2(Γ1(24), χ8) has dimension two, and the characteristic polynomial of U2 is given by x2 + 2x+ 2,
giving us slope 1

2 with multiplicity two. There are two Eisenstein series on Γ0(3) and thus Theorem

3.10 implies that that the slopes in weight z2χ8 are, if Conjecture 3.1 is true for some r > 1, given
by the list

1

2
,
1

2
, 1, 1,

3

2
,
3

2
, 2, 2, . . . .

This is in line with experimental evidence; see Table 6. (Compare with Example 4.6.1.)

3.15. Now we look at a more complicated example, to give a flavor of how many arithmetic
progressions are predicted by Theorem 3.10. Suppose that p = 11 andN = 1. We expect Conjecture
3.1 is true with r = 1. Choose χ to be even, have order 11 and have conductor 121 so that

v2(w(z2χ)) = 1
10 . To generate the list of arithmetic progressions of slopes appearing in S†

z2χ
(1),

Theorem 3.10 says we need to examine the slopes occurring in S2(Γ1(11), χω−2j) for j = 0, . . . , 4.
The following table gives these slopes (all scaled by 10, computed in sage).

j 10 times slopes in S2(Γ1(11), χω−2j)
0 0, 2, 3, 4, 5, 5, 6, 7, 8, 10
1 1, 2, 3, 4, 4, 5, 6, 7, 9, 9
2 1, 2, 3, 3, 4, 5, 7, 8, 8, 9
3 1, 2, 2, 3, 5, 6, 7, 7, 8, 9
4 1, 1, 3, 4, 5, 6, 6, 7, 8, 9
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Theorem 3.10 then predicts that the slopes in S†
z2χ

(1) (scaled by 10) are given by the 55 arithmetic

progressions with common difference 50 and starting terms: 0, 2, 3, 4, 5, 5, 6, 7, 8, 10, 10, 11, 12,
13, 14, 14, 15, 16, 17, 19, 19, 20, 21, 22, 23, 23, 24, 25, 27, 28, 28, 29, 30, 31, 32, 32, 33, 35, 36, 37,
37, 38, 39, 40, 41, 41, 43, 44, 45, 46, 46, 47, 48, 49, 50. Note that we’ve included in this list the
contribution of the progression 10, 20, 30, . . . (which arises since e(1) = 1) as 5 separate arithmetic
progressions with common difference 50.

By Conjecture 3.1, these slopes determine the slopes in S2(Γ1(1331), χ′) where χ′ is an even
character with order 121 and conductor 1331. As a check, we computed the slopes in this space
using sage and indeed they came out exactly as predicted.

To illustrate Corollary 3.10, this conjecture predicts that the slopes in ν† =
⋃4
j=0 ν

†
z2χω2j (scaled

by 10) is a union of 55 arithmetic progressions with common difference 10 and starting terms:

{0} ∪ {1}⊕5 ∪ {2}⊕5 ∪ {3}⊕6 ∪ {4}⊕5 ∪ {5}⊕6 ∪ {6}⊕5 ∪ {7}⊕6 ∪ {8}⊕5 ∪ {9}⊕5 ∪ {10}⊕6 .

(The lone seed slope zero corresponds to the (unique) 11-adic cuspidal Hida family of tame level
one on the component of weights k ≡ 2 mod 10.)

4. Questions and examples

The constants in the trace formula, Theorem 2.4, are easily computed on a computer as rational
numbers and thus we can write the coefficients of the characteristic power series as exact elements
in Zp[Γ]. On the other hand, for the ease of reading off interesting phenomena, it is necessary to
write the coefficients as power series ai(w) in a p-adic variable w. In order to do that, we have to
make the choice of a topological generator γ for Γ (e.g. γ = 1 +p if p is odd and γ = 5 if p = 2) and
convert the Iwasawa elements to power series. In doing so, we have to compute p-adic logarithms
and thus can only work up to some (pN , wM )-adic precision. All the following computations were
done this way and the code is posted at [3].

4.1. Consider the coefficients ai(w) of the characteristic power series P (w, t) over a fixed compo-
nent. If Conjecture 3.1 is true then there exists a region 0 < vp(−) < r such that the break points
of the Newton polygon occur at integers i so that ai 6= 0 mod p and the zeroes of ai(w) lie in the
region vp(−) ≥ r. We do not know any examples, for any p or N , that disprove Conjecture 3.1
for the value r = 1. In particular we have no example where i is the index of a break point of
the w-adic Newton polygon of P (w, t) but ai has a zero in the region vp(−) < 1. What about the
non-break points of the Newton polygon?

Question 4.1. Are the zeroes of ai(w) uniformly bounded inside the disc vp(−) ≥ 1?

An affirmative answer to Question 4.1 combined with the vanishing of the µ-invariants for N = 1
would (easily) imply Conjecture 3.1 is true for N = 1 with r = 1. Unfortunately, we have to give
a negative answer.

Answer 4.1. No.

Example 4.1.1. Let p = 23 and N = 1. Using weight coordinate w = κ(24)−1 on the component
corresponding to weights k ≡ 6 mod 22, we computed the w-adic expansions

a1(w) = (18 · 23 + · · · ) + (20 + · · · )w + · · · ,
a2(w) = (11 · 232 + · · · ) + (4 · 23 + · · · )w + (15 + · · · )w2 + · · · ,
a3(w) = (4 · 234 + · · · ) + (4 · 233 + · · · )w + (6 · 232 + · · · )w2 + (23 + · · · )w3+

(13 · 23 + · · · )w4 + (3 + · · · )w5 + · · · .
17



Thus λ(a3) = 5 and the roots of a3 have 23-adic valuation(s) 1, 1, 1, 1
2 ,

1
2 . This is the smallest

example of a prime p with N = 1, so that one of a1, . . . , a4 had zeroes outside the disc vp(−) ≥ 1.
The next example we found was for p = 53, where the culprit was a3(w) on the component
corresponding to k ≡ 4 mod 52.

Computing the coefficient a4 (for p = 23 on the component containing the weight 6) we have

a4(w) = (21 · 236 + · · · ) + (16 · 235 + · · · )w + (11 · 234 + · · · )w2 + (3 · 233 + · · · )w3+

(2 · 232 + · · · )w4 + (10 · 23 + · · · )w5 + (21 + · · · )w6 + · · · .
Thus λ(a4) = 6 and the zeroes of a4 all lie on the circle v23(−) = 1. Since λ(a2) = 2, the point
(3, λ(a3)) is not on the w-adic Newton polygon of the mod 23 reduction. This means that the
zeroes of a3(w) lying outside the disc v23(−) ≥ 1 are somehow irrelevant to Conjecture 3.1.

Example 4.1.2. You can even find examples of zeroes of a1 = − tr(Up) outside of the central
region vp(−) ≥ 1. Let p = 5 and N = 3. On the component k ≡ 0 mod 4 with weight coordinate
w = κ(6)− 1, we found that

a1(w) = (2 · 5 + · · · ) + (5 + · · · )w+ (2 · 5 + · · · )w2 + (2 · 5 + · · · )w3 + (5 + · · · )w4 + (1 + · · · )w5 + · · ·
By examination, we have that µ(a1) = 0 and a1 has five roots all lying in the region v5(−) = 1

5 . This
example is even slightly worse than it appears because the zeroes of a1 lie closer to the boundary
than the arithmetic weights zkχ25 corresponding to characters of conductor 25 = 52. A further
computation, however, shows that this does not disprove Conjecture 3.1 for p = 5 and N = 3 with
r = 1 even. Indeed, it follows from the data in Table 1 below that the index i = 1 does not define
a point on either the w-adic Newton polygon mod 5 nor the Newton polygon of P (κ, t) for any
weight κ with 0 < v5(w(κ)) < 1. Compare with the corresponding table on the component of 5-adic
weight space corresponding to weights k ≡ 2 mod 4 (see Table 7).

Table 1. p = 5, N = 3. Experimental observations for

det(1− tU5

∣∣
S†κ(3)

) = 1 +
∑

ai(w)ti

on the component of 5-adic weight space corresponding to weights k ≡ 0 mod 4.
(The notation am means the value a repeated m times.)

i µ(ai) λ(ai) Slopes of zeroes of ai
1 0 5 1

55
2 0 2 12

3 0 3 2,12

4 0 4 14

5 0 7 17

6 0 10 2,19

7 0 14 22,110
1
22

8 0 16 23,113

Example 4.1.3. Finally, the authors have not seen definitively different behavior in the location
of the zeroes of the ai(w) in the so-called Buzzard irregular cases. For example, the prime p = 5
is Γ0(14)-irregular in the sense of [5]. The location of the zeroes of ai(w) for i = 1, . . . , 8 on the
component k ≡ 0 mod 4 are recorded in Table 2 below. Here one observes that a6(w) and a7(w)
have zeroes in the region 0 < v5(w) < 1, but that the sixth and seventh indices visibly do not lie on
the w-adic Newton polygon of P (w, t), and hence are irrelevant for the w-adic slopes. However, it is
easily verified from the ultrametric inequality that the sixth and seventh indices are also irrelevant
for P (κ, t) for any weight κ with 0 < v5(w(κ)) < 1 as well.
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Table 2. p = 5, N = 14. Experimental observations for

det(1− tU5

∣∣
S†κ(14)

) = 1 +
∑

ai(w)ti

on the component of 5-adic weight space corresponding to weights k ≡ 0 mod 4.
(The notation am means the value a repeated m times.)

i µ(ai) λ(ai) Slopes of zeroes of ai
1 0 5 −
2 0 2 −
3 0 1 1
4 0 0 −
5 0 1 1
6 0 4 1, 133
7 0 4 12,

1
22

8 0 4 14,

4.2. Here is a question which a computer could never answer.

Question 4.2. Is there an r > 0 such that the locus of zeroes of {ai(w)} is uniformly bounded in
vp(−) ≥ r?

Either a positive or a negative answer would be interesting, and a positive answer would prove
Conjecture 3.1 (if N = 1 at least).

4.3. By Theorem A, if N = 1 then the µ-invariants of every coefficient of the Fredholm series is
zero. By Corollary A2, infinitely many µ-invariants are zero for a general tame level.

Question 4.3. Can the µ-invariants be positive for N > 1?

Answer 4.3. Yes.

Example 4.3. Let’s consider p = 2 and N = 3. We will flesh out Section 3.14. By Theorem 2.5
we have that

T1 = −c3(2, 1)[1]− c3(2, 1, 1)

ρ2
1,1 − 2

[
1 +
√
−7

2

]
where we choose the square root so that

√
−7 ≡ 1 mod 4 in Z2. In the appendix we compute

the constants and get c3(2, 1) = 2 (see Lemma II.1) and c3(2, 1, 1) = 0 (see Lemma II.2). Thus
T1 = −2[1] meaning a1 = 2[1] has a positive µ-invariant. And, in particular, we’ve shown that the
function κ 7→ tr(U2

∣∣
S†κ(3)

) is the constant function −2.

4.4. Returning to Example 4.3, can we say more about the µ-invariants of the higher indices?

Proposition 4.4. Let P (w, t) = 1 +
∑
ai(w)ti be the characteristic power series of U2 acting on

2-adic overconvergent cuspforms of level Γ0(3). Then µ(ai) = 0 if and only if i is even.

Proof. Since c3(2, j) = 2 uniformly in j (see Lemma II.1) it is not hard to see that for all i the
expression of ai as an element of Zp[[Γ]] is given by

ai = (i+ 1)[1] + finite number of other terms.

In particular, if i is even then ai 6≡ 0 mod 2 by Lemma 2.2.
Now we will show ai ≡ 0 mod 2 when i is odd. We already know that a1 = 2[1] by Example 4.3.

Suppose that i > 1 and by induction we suppose that ai−j ≡ 0 mod 2 if j < i and j is even. Since
19



i is odd, the recursive formula

iai = −
i∑

j=0

ai−jTj

implies that it suffices to show that the right hand side vanishes modulo 2. Then, by induction, it
suffices to show that Tj ≡ 0 mod 2 if j is odd.

Consider the expression of Tj as an Iwasawa function in Theorem 2.5. We already noted that
c3(2, 1) = 2 (see Lemma II.1). On the other hand, if j is odd then ∆s,j = s2− 2j+2 ≡ s2− 2 mod 3
and thus 3 - ∆s,j when j is odd. It follows from Lemma II.2 that each of c3(2, s, j) (running over

1 ≤ s < 2pj/2) is divisible by two as well and this completes the argument. �

4.5. Inspired by Example 4.3, Kevin Buzzard suggested the following question and answer.

Question 4.5. Can the µ-invariants be arbitrarily large?

Answer 4.5. Yes.

Example 4.5.1. Choose any sequence of primes `1, `2, . . . with `i > 3 for each i. Let Nm =
3 · `1 · · · `m−1. Then cNm(−) = c3(−) ·

∏m−1
i=1 c`i(−). By Lemma II.1 and Lemma II.2 we see that

cNm(2, 1) = 2m,

cNm(2, 1, 1) = 0.

Thus, tr(U2

∣∣
S†κ(Nm)

) = −2m[1] for any m ≥ 1, and µ(a1) = m for p = 2 and tame level Nm.

The positive µ-invariants are not a phenomena confined to the case p = 2.

Example 4.5.2. Suppose that N = ` = 197 and let a2 be the second coefficient of the characteristic
power series of U3 acting on the 3-adic overconvergent cuspforms of level Γ0(197). Then a1 = 2[1]
and a2 = 3[1] are both constant and the latter has a positive µ-invariant.

4.6. In [7], it is proven that if p = 2 and N = 1 then Conjecture 3.1 is true with r = 3. The
coefficients of the characteristic series in this case never have positive µ-invariants and all their
zeroes lie in the region v2(w) ≥ 3. In Table 6 below, we give the µ and λ-invariants for the
coefficients ai(w) of the operator U2 acting on 2-adic overconvergent cuspforms of level Γ0(3).
What one notices is the functions ai(w) have all their zeroes contained in the disc v2(w) ≥ 3, just
like the Buzzard-Kilford example [7].

Question 4.6. Is it possible that for p = 2 Conjecture 3.1 is true with r = 3 for every N ≥ 1?

Answer 4.6. No. If Conjecture 3.1 is true for p = 2 and N = 3 then r ≤ 2 is necessary.

Example 4.6.1. Let p = 2 andN = 3. It follows immediately from Table 6 that if 2 < v2(w(κ)) < 3
then the lowest slope in weight κ is either 1 or repeated at least three times (it is likely 1). In
particular, the first breakpoint occurs either at index 1 or at index greater than or equal to 3. But,
if χ8 is the even Dirichlet character of conductor 8 then one can compute, in sage for example, the
slopes of U2 acting on S4(Γ1(24), χ8) to be 1

2 ,
1
2 , 1, 1,

3
2 ,

3
2 , . . . .

We also checked that a similar phenomena occurs when N = 5 (half the µ-invariants are positive
and the optimal radius for Conjecture 3.1 is at most 2). Lest the reader explain away these examples
as being due to positive µ-invariants, we also give the example of N = 7.

Example 4.6.2. Let p = 2 and N = 7. We computed the first nine coefficients of the characteristic
power series and compiled the information into Table 3.
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Table 3. p = 2, N = 7. Experimental observations for

det(1− tU2

∣∣
S†κ(7)

) = 1 +
∑

ai(w)ti

on the even component of 2-adic weight space. (The notation am means the value
a repeated m times.)

i µ(ai) λ(ai) Slopes of zeroes of ai
1 0 0 –
2 0 2 12

3 0 2 12

4 0 2 42

5 0 2 42

6 0 6 42, 3, 2, 1
22

7 0 6 7
22

, 32, 1
22

8 0 6 4, 7
22

, 33

9 0 6 42, 34

Consider the even Dirichlet character χ8 of conductor 8. The classical space S2(Γ1(56), χ8) of
cuspforms is six dimensional. The characteristic polynomial of U2 acting on this space (computed
in sage) is given by

det(U2 − tI
∣∣
S2(Γ1(56),χ8)

) = t6 + t5 + 2t4 + 4t3 + 4t2 + 4t+ 8.

Thus the slopes of U2 in classical weight two with character χ8 are given by 0, 1
2 ,

1
2 ,

1
2 ,

1
2 , 1. It follows

from Theorem 3.9 that the Newton polygon of U2 acting on S†
z2χ8

(7) must break at index i = 1

and i = 5.
Now suppose that Conjecture 3.1 is true for some r > 2. Since v2(w(z2χ8)) = 1 < r, the first

two indices of break points of the Newton polygon(s) over the region 0 < v2(−) < r are 1 and 5.
But if w0 is any weight with 2 < v2(w0) < r, we check that there is a break point strictly between
indices 1 and 5. Indeed, it is immediate from Table 3 that:

v2(a3(w0))− v2(a1(w0))

3− 1
=

2− 0

2
= 1

and
v2(a5(w0))− v2(a3(w0))

5− 3
=

2v2(w0)− 2

2
= v2(w0)− 1.

This is a contradiction since v2(w0)− 1 > 1.

Remark. One cannot produce a concrete example of this phenomena by computing a classical space
of modular forms since there is no classical weight in the region 2 < v2(−) < 3.

Appendix I. Tables

The tables below were constructed using an implementation of Koike’s formula (see Theorem
2.5) in sage [21]. The relevant programs are available on the websites of the authors.

We present the following data: for a fixed component of weight space (given by a congruence
class k mod p − 1) we give the µ and λ-invariants of the coefficients ai(w) of the characteristic
power series, along with the valuations of the finitely many zeroes of each ai(w). The algorithm is
slow, exponential in the maximal index i. Moreover, as i → ∞, one must use higher and higher
(w, p)-adic precision.
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For example, if one wants to reproduce results in Table 4 (p = 2 and N = 1) up to i = 10, it
is enough to only work modulo (w56, 2250). The w-adic precision can be computed ahead of time
by [7] and the necessary 2-adic precision can be estimated by [6, Corollary 1]. This takes roughly
a minute on the first author’s personal laptop. In contrast, going up to i = 20 requires roughly
precision (w211, 2850) and took almost eight hours to complete.

Throughout, the notation am means the value a repeated m times.

Table 4. p = 2, N = 1. Experimental observations for

det(1− tU2

∣∣
S†κ(1)

) = 1 +
∑

ai(w)ti

on the even component of 2-adic weight space.

i µ(ai) λ(ai) Slopes of zeroes of ai
1 0 1 3
2 0 3 4, 32

3 0 6 7, 4, 34

4 0 10 7, 5, 42, 36

5 0 15 6,52,43,39

6 0 21 8, 6,52,45,312

7 0 28 82, 6,53,46,316

8 0 36 82,62,54,48,320

9 0 45 8, 7,63,55,410,325

10 0 55 72,64,56,413,330
...

...
...

...
20 0 210 9,84,78,612,525,450,3110

Table 5. p = 3, N = 1. Experimental observations for

det(1− tU3

∣∣
S†κ(1)

) = 1 +
∑

ai(w)ti

on the component of 3-adic weight space corresponding to k ≡ 0 mod 2.

i µ(ai) λ(ai) Slopes of zeroes of ai
1 0 2 12

2 0 6 3,15

3 0 12 3,22,19

4 0 20 3,24,115

5 0 30 4,32,25,122

6 0 42 42,32,28,130

22



Table 6. p = 2, N = 3. Experimental observations for

det(1− tU2

∣∣
S†κ(3)

) = 1 +
∑

ai(w)ti

on the even component of 2-adic weight space.

i µ(ai) λ(ai) Slopes of zeroes of ai
1 1 0 −
2 0 1 4
3 1 2 32

4 0 3 4,32

5 1 4 8, 4,32

6 0 6 6, 5, 4,32

7 1 8 6,43,34

Table 7. p = 5, N = 3. Experimental observations for

det(1− tU5

∣∣
S†κ(3)

) = 1 +
∑

ai(w)ti

on the component of 5-adic weight space corresponding to weights k ≡ 2 mod 4.

i µ(ai) λ(ai) Slopes of zeroes of ai
1 0 0 −
2 0 1 1
3 0 3 22, 1
4 0 5 22,13

5 0 7 2314

6 0 9 24,15

7 0 12 25,17

8 0 16 25,111

Appendix II. Constants in trace formulae

In this appendix, we briefly record information about the constants that appear in Corollary 2.5
for a general tame level N . We refer to the notation of Hijikata, especially [12, pp. 57–58]. Among
all the terms in [12, Theorem 0.1], the only ones which survive the p-adic limit in Corollary 2.5 are
the terms labeled (h) and (e). Among those terms, (h) gives rise to the “constant term” cN (p, j)
in front of the group-like element [1] in Corollary 2.5 and the term(s) labeled (e) gives rise to the
other constants.

II.1. It’s not hard to see that the integer s = pj + 1 is the unique positive integer s co-prime to p
such that s2 − 4pj = t2 for an integer t, in which case we have t = pj − 1. Then the definition of
cN (p, j) in [12] is

cN (p, j) :=
1

pj − 1

∑
f |(pj−1)

φ

(
pj − 1

f

)
c(pj + 1, f),

where c(s, f) is as explained on [12, p. 58]. Simple examples when N is not square-free show that
you really have to compute the sum. On the other hand, an easy special case is the following.

Lemma II.1. If N = ` is a prime different from p then c(pj + 1, f) = 2 for all f | pj − 1 and thus
c`(p, j) = 2 for all primes ` 6= p.
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Proof. We only sketch the computation since it is easily verified. If pj − 1 6≡ 0 mod ` then x2 −
(pj + 1)x+ pj has exactly two roots modulo `m for all m ≥ 1, namely pj and 1. Thus, to compute
c(pj + 1, f) in this case, one only uses the A-terms in [12, p. 58] and we see c(pj + 1, f) = 2. If
pj − 1 ≡ 0 mod ` then it could be more complicated except that in the end the sets defined Aη(· · · )
and Bη(· · · ) in [12] are counting certain solutions to x2 − (pj + 1)x+ pj modulo `v`(N) = `, which
in this case is (x− 1)2. So the computation is easy still. �

Remark. If N and M are coprime then cNM (p, j) = cN (p, j)cM (p, j) and so Lemma II.1 also gives
a formula for square-free N .

II.2. The rest of the terms in Theorem 2.5 are computed from the terms denoted by (e) in [12].

For each s such that p - s and 1 ≤ s < 2pj/2, write ∆s,j = s2 − 4pj = t2DK where DK is the
discriminant of an imaginary quadratic field. Then

(II.2.1) cN (p, s, j) :=
∑
f |t

ĥ

(
s2 − 4pj

f2

)
c(s, f)

where c(s, f) is as on [12, p. 58] again, and ĥ(D) is defined as a certain normalized class number4.
It can be computed from tables of class numbers of imaginary quadratic fields (e.g. on a computer)
by the formula

ĥ(D) = t · ĥ(DK)
∏
`|t

(
1−

(
DK

`

)
1

`

)
where D = t2DK and DK is a fundamental discriminant. One can check that this agrees with the
formulae given for N = 1 in Section 2.6 by using that c(s, f) = 1 for all s and f if N = 1 and the
well-known identity for the Hurwitz class numbers

(II.2.2) H(4pj − s2) =
∑
f |t

ĥ

(
s2 − 4pj

f2

)
.

We make a similar computation as Lemma II.1 in the case where N = ` is prime.

Lemma II.2. Suppose that N = ` is a prime different from p and let ∆s,j = s2−4pj. If (∆s,j , `) = 1
then

c(s, f) =

2 if
(

∆s,j

`

)
= 1

0 if
(

∆s,j

`

)
= −1

where
(∗
∗
)

is the Kronecker symbol. In particular, c(s, f) is independent of f and

c`(p, s, j) =

2 ·H(4pj − s2) if
(

∆s,j

`

)
= 1

0 if
(

∆s,j

`

)
= −1.

Proof. We omit the proof of the first part as it follows easily from the formulae given in [12], as in
Lemma II.1. The second part of the statement follows the first part, the definition (II.2.1) and the
identity (II.2.2). �

4If we write D = t2DK where DK is the discriminant of an imaginary quadratic field, then OD = Z + tOK is an

order in K and ĥ(D) := 2h(OD)/w(OD) where h(OD) is the usual class number and w(OD) is the cardinality of the
roots of unity.
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